Распределение лекарственных препаратов; Студопедия

Транспорт и распределение лекарств

Транспорт лекарств в организме к месту приложения их действия осуществляется жидкими тканями организма – кровью и лимфой. В крови лекарство может находиться в свободном состоянии и в состоянии, связанном с белками и форменными элементами крови. Фармакологически активным, т.е. способным проникать из крови в ткани-мишени и вызывать эффект, является свободная фракция лекарства.

Связанная фракция лекарства представляет собой неактивное депо лекарства и обеспечивает более длительное его существование в организме.

Как правило, оснóвные лекарства связываются с кислым a1-гликопротеинами плазмы крови, а кислые лекарства транспортируются на альбуминах. Некоторые лекарственные средства (гормональные, витаминные или медиаторные вещества) могут транспортироваться на специфических белках переносчиках (тироксин-связывающий глобулин, транстеритин, секс-глобулин и др.). Некоторые лекарства могут связываться и транспортироваться на ЛПНП или ЛПВП.
В зависимости от способности связываться с белками все лекарственные средства можно разделить на 2 класса:

  • Класс I: Лекарственные средства, которые применяются в дозах меньших, чем число мест их связывания на белках. Такие лекарства в крови практически полностью (на 90-95%) связаны с белком и доля свободной их фракции невелика;
  • Класс II: Лекарственные средства, которые применяют в дозах больших, чем число мест их связывания на белках. Такие лекарственные средства в крови находятся преимущественно в свободном состоянии и доля связанной их фракции не превышает 20-30%.

Если пациенту, принимающему лекарство из класса I, которое на 95% связано с белком (например, толбутамид) одновременно ввести другое лекарство, оно начнет конкурировать за места связывания и вытеснит часть первого лекарства. Даже если предположить, что доля вытесненного лекарства составит всего 10% уровень свободной фракции лекарства из класса I составит 5+10=15%, т.е. увеличится в 3 раза (!) и риск развития токсических эффектов у такого пациента будет весьма велик.

Если пациент принимает лекарство из класса II, которое на 30% связано с белком, то при вытеснении 10% за счет назначения другого лекарства, свободная фракция составит всего 70+10=80% или возрастет в 1,14 раза.

Схема 3. Связывание лекарственного средства I класса и II класса с альбумином, в том случае, когда они назначаются по отдельности и совместно. А. I класс лекарственных средств. Доза лекарства меньше, чем число доступных мест связывания. Большая часть молекул лекарства связана с альбумином и концентрация свободной фракции лекарственного средства низкая.
В. II класс лекарственных средств. Доза больше, чем число доступных мест связывания. Большинство молекул альбумина содержат связанное лекарство, но концентрация свободной его фракции все еще остается значительной.
С. Совместное назначение I и II класса лекарственных средств. При одновременном введении происходит вытеснение лекарства I класса из связи с белком и уровень его свободной фракции возрастает.
Таким образом, лекарства, которые в значительной мере связаны с белком обладают более длительным эффектом, но могут вызывать развитие токсических реакций, если на фоне их приема пациенту проводят назначение дополнительного лекарства, без коррекции дозы первого средства.

Некоторые лекарства находятся в крови в связанном с форменными элементами состоянии. Например, на эритроцитах переносится пентоксифиллин, а на лейкоцитах — аминокислоты, некоторые макролиды.

Распределением лекарственных средств называют процесс его распространения по органам и тканям после того, как он поступит в системный кровоток. Именно распределение лекарств обеспечивает его попадание к клеткам-мишеням. Распределение лекарств зависит от следующих факторов:

  • Природы лекарственного вещества – чем меньше размеры молекулы и липофильнее лекарство, тем быстрее и равномернее его распределение.
  • Размеров органов – чем больше размер органа, тем больше лекарственного средства может поступить в него без существенного изменения градиента концентраций. Например, объем скелетных мышц очень велик, поэтому концентрация лекарства в них остается низкой даже после того, как произошла абсорбция значительного количества лекарства. Напротив, объем головного мозга ограничен и поступление в него даже небольшого количества лекарства сопровождается резким повышением его концентрации в ткани ЦНС и исчезновению градиента.
  • Кровоток в органе. В хорошо перфузируемых тканях (мозг, сердце, почки) терапевтическая концентрация вещества создается значительно раньше, чем в тканях плохо перфузируемых (жировая, костная). Если лекарственное средство быстро подвергается разрушению, то в плохо перфузируемых тканях его концентрация может так и не повысится.
  • Наличие гистогематических барьеров (ГГБ). ГГБ называют совокупность биологических мембран между стенкой капилляра и тканью, которую он кровоснабжает. Если ткань имеет плохо выраженный ГГБ, то лекарство легко проникает через него. Такая ситауция имеет место в печени, селезенке, красном костном мозге, где имеются капилляры синусоидного типа (т.е. капилляры, в стенке которых имеются отверстия – фенестры). Напротив, в ткани с плотными ГГБ распределение лекарств происходит весьма плохо и возможно лишь для высоколипофильных соединений. Наиболее мощными ГГБ в организме человека являются:
    • Гемато-энцефалический барьер – барьер между кровеносными капиллярами и тканью мозга. Покрывает всю мозговую ткань за исключением гипофиза и дна IV желудочка. При воспалении проницаемость барьера резко возрастает.
    • Гемато-офтальмический барьер – барьер между капиллярами и тканями глазного яблока;
    • Гемато-тиреоидный барьер – барьер между капиллярами и фолликулами щитовидной железы;
    • Гемато-плацентарный барьер – разделяет кровообращение матери и плода. Один из самых мощных барьеров. Практически не пропускает лекарственные вещества с Mr>600 Да вне зависимости от их липофильности. Проницаемость барьера повышается с 32-35 нед беременности. Это связано с его истончением.
    • Гемато-тестикулярный барьер – барьер, который разделяет кровеносные сосуды и ткани яичек.
  • Связывание лекарства с белками плазмы. Чем больше связанная фракция лекарства, тем хуже его распределение в ткани. Это связано с тем, что покидать капилляр могут лишь свободные молекулы.
  • Депонирование лекарства в тканях. Связывание лекарства с белками тканей способствует его накоплению в них, т.к. снижается концентрация свободного лекарства в периваскулярном пространстве и постоянно поддерживается высокий градиент концентраций между кровью и тканями.
Читайте также:  Неприятный привкус во рту причины, виды, лечение

Количественной характеристикой распределения лекарства является кажущийся объем распределения (Vd). Кажущийся объем распределения – это гипотетический объем жидкости, в котором может распределиться вся введенная доза лекарства, чтобы создалась концентрация, равная концентрации в плазме крови. Т.о. Vd равен отношению введенной дозы (общего количества лекарства в организме) к его концентрации в плазме крови:
.
Рассмотрим две гипотетические ситуации (см. схему 4). Некое вещество А практически не связывается с макромолекулами (жирные извилистые линии на схеме) как в сосудистом, так и во внесосудистом компартментах гипотетического организма. Поэтому вещество А свободно диффундирует между этими двумя компартментами. При введении 20 ЕД вещества в организм состояние устойчивого равновесия возникает при концентрации в крови вещества А в 2 ЕД/л и объем распределения, соответственно, равен 10 л. Вещество В, напротив, прочно связывается с белками крови, диффузия вещества существенно ограничена. При установлении равновесия, только 2 ЕД от общего количества вещества В диффундируют в экстраваскулярный объем, а остальные 18 ЕД остаются в крови и объем распределения составляет 1,1 л. В каждом случае общее количество лекарства в организме одинаковое (20 ЕД), но рассчитанные объемы распределения, как это легко видеть, очень различны.

Схема 4. Влияние связывания веществ тканями на объем их распределения. Пояснения в тексте.
Таким образом, чем больше кажущийся объем распределения, тем большая часть лекарств распределяется в ткани. У человека массой 70 кг объемы жидких сред составляют в целом 42 л (см. схему 5). Тогда, если:

    • Vd=3-4 л, то все лекарство распределено в крови;
    • Vd 48 л, то все лекарство находится преимущественно во внеклеточном пространстве.


Схема 5. Относительная величина различных объемов жидких сред организма, где происходит распределение лекарственных средств у человека массой 70 кг.
Кажущийся объем распределения часто применяют при планировании режима дозирования для расчета нагрузочных доз () и их коррекции. Нагрузочной называют дозу лекарства, которая позволяет полностью насытить организм лекарственным средством и обеспечить в крови его терапевтическую концентрацию:

Распределение

Объем распределения

Этот второй важнейший фармакокинетический параметр характеризует распределение препарата в организме. Объем распределения (Vр) равен отношению общего содержания вещества в организме (ОСО) к его концентрации (С) в плазме крови или цельной крови. Объем распределения часто не соответствует никакому реальному объему. Этот объем, необходимый для равномерного распределения вещества в концентрации, равной концентрации этого вещества в плазме крови или цельной крови.

Vр= ОСО / С . (1.7)

Объем распределения отражает долю вещества, содержащегося во внесосудистом пространстве. У человека массой тела 70 кг объем плазмы крови составляет 3 л , ОЦК — около 5,5 л , межклеточной жидкости — 12 л , общее содержание воды в организме — примерно 42 л . Однако объем распределения многих лекарственных веществ гораздо больше этих величин. Например, если у человека массой тела 70 кг в организме содержится 500 мкг дигоксина, его концентрация в плазме крови составляет 0,75 нг/мл. Разделив общее содержание дигоксина в организме на его концентрацию в плазме крови, получим, что объем распределения дигоксина равен 650 л . Это более чем в 10 раз превышает общее содержание воды в организме. Дело в том, что дигоксин распределяется преимущественно в миокарде, скелетных мышцах и жировой ткани, так что его содержание в плазме крови невелико. Объем распределения лекарственных средств, активно связывающихся с белками плазмы крови (но не с компонентами тканей), примерно соответствуют объему плазмы крови. Вместе с тем некоторые лекарственные средства содержатся в плазме крови преимущественно в связанной с альбумином форме, но имеют большой объем распределения за счет депонирования в других тканях.

Читайте также:  Уголь активированный №10 (таблетки, г) инструкция по применению, показания

Период полувыведения

Период полувыведения (Т ½ ) — это время, за которое концентрация вещества в сыворотке крови (или его общее содержание в организме) снижается вдвое. В рамках однокамерной модели определить Т ½ очень просто. Полученное значение используют затем для расчета дозы. Однако для многих лекарственных средств приходится использовать многокамерную модель, поскольку динамика их концентрации в сыворотке крови описывается несколькими экспоненциальными функциями. В таких случаях рассчитывают несколько значений Т ½ .

В настоящее время общепризнано, что Т ½ зависит от клиренса и объема распределения вещества. В стационарном состоянии зависимость между Т ½ , клиренсом и объемом распределения вещества приблизительно описывается следующим уравнением:

Т½ ≈ 0,693 × Vр / Cl. (1.8)

Клиренс характеризует способность организма элиминировать вещество, поэтому при снижении этого показателя вследствие какого-либо заболевания Т ½ увеличивается. Но это справедливо лишь в том случае, если не меняется объем распределения вещества. Например, с возрастом Т ½ диазепама увеличивается, но не за счет снижения клиренса, а вследствие увеличения объема распределения (Klotzet et al., 1975). На клиренс и объем распределения влияет степень связывания вещества с белками плазмы крови и тканей, так что прогнозировать изменение Т ½ при том или ином патологическом состоянии не всегда возможно.

По Т ½ не всегда можно судить об изменении элиминации препарата, зато этот показатель позволяет рассчитать время достижения стационарного состояния (в начале лечения, а также при изменении дозы или частоты введения). Концентрация лекарственного вещества в сыворотке крови, составляющая примерно 94% средней стационарной, достигается за время, равное 4 × Т ½ . Кроме того, с помощью Т ½ можно оценить время, необходимое для полной элиминации вещества из организма, и рассчитать интервал между введениями.

А.П. Викторов «Клиническая фармакология»

Распределение лекарственных препаратов по тканям

, PharmD, MAS, BCPS-ID, FIDSA, FCCP, FCSHP, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego

После того как лекарственное средство попадает в системный кровоток, оно распределяется в тканях организма. Распределение обычно происходит неравномерно из-за различий в интенсивности кровоснабжения, связывания с тканями (например, с различным содержанием жира), местного рН и проницаемости клеточных мембран.

Степень проникновения лекарственного средства в ткань зависит от скорости кровотока, массы ткани и характера распределения вещества между кровью и тканью. Равновесное распределение (когда скорости проникновения и выхода из ткани совпадают) достигается быстрее в областях с богатой васкуляризацией, если диффузия через клеточную мембрану не является скорость-лимитирующим фактором. После достижения равновесия концентрация лекарственного средства в ткани и внеклеточных жидкостях пропорциональна концентрации в плазме крови. Метаболизм и элиминация происходят одновременно с распределением, делая процесс динамичным и сложным.

После того, как лекарственное средство проникло в ткани, его распределение в интерстициальной жидкости определяется, в первую очередь, перфузией. Для мало перфузируемых тканей (например, мышечной, жировой) характерно очень медленное распределение, особенно если ткань обладает высоким сродством к лекарственному веществу.

Объем распределения

Кажущийся объем распределения – это гипотетический объем жидкости, в котором могло бы распределиться общее количество введенного лекарственного средства для создания концентрации, соответствующей таковой в плазме крови. Например, если вводится 1 000 мг лекарственного средства, а концентрация в плазме крови составляет 10 мг/л, то 1 000 мг распределяется в 100 л (доза/объем = концентрация; 1 000 мг/x л = 10 мг/л; отсюда: x = 1 000 мг/10мг/л = 100 л).

Объем распределения не имеет никакого отношения к объему тела или содержанию в нем жидкости, а, скорее, зависит от характера распределения лекарственного вещества в организме. В случае препаратов, интенсивно связывающихся с тканями, очень малая их доля остается в системе кровообращения. Следовательно, концентрация в плазме крови будет низкой, а объем распределения – высоким. Лекарственные средства, которые преимущественно остаются в кровотоке, обычно имеют низкий объем распределения.

Объем распределения служит эталоном для плазменной концентрации, ожидаемой для введенной дозы, но дает мало информации о конкретной схеме распределения. Каждый препарат по-своему распределяется в организме. Одни препараты распределяются в основном в жировой ткани, другие – остаются во внеклеточной жидкости, а некоторые в значительной степени связаны с конкретными тканями.

Читайте также:  Лечение зуда во влагалище

Лекарственные препараты, являющиеся слабыми кислотами (например, варфарин, аспирин), зачастую хорошо связываются с белками плазмы и поэтому имеют невысокий кажущийся объем распределения. Многие основания (например, амфетамин, петидин), напротив, в большой степени захватываются тканями и, таким образом, имеют кажущийся объем распределения больше, чем объем всего организма.

Связывание

Степень распределения ЛС в ткани зависит от его относительного связывания с белками плазмы крови и тканями. В кровотоке лекарственные средства транспортируются частично как свободная (несвязанная) фракция, а частично – как связанная фракция (например, с белками плазмы крови или клетками крови). Из множества белков плазмы, которые могут взаимодействовать с препаратами, наиболее важными являются альбумин, альфа-1 кислый гликопротеин и липопротеины. ЛС-слабые кислоты обычно более интенсивно связываются с альбумином; основания, напротив, – с альфа-1-кислым гликопротеином и/или липопротеинами.

Только несвязанное лекарственное средство способно к пассивной диффузии в экстраваскулярные пространства или ткани, где происходит его фармакологическое действие. Поэтому концентрация несвязанного лекарственного средства в системном кровотоке обычно определяет концентрацию его в месте реализации эффекта и, таким образом, выраженность последнего.

При высоких концентрациях количество связанного лекарственного средства достигает верхнего предела, определяемого количеством доступных участков связывания. Их насыщение – основа эффекта вытеснения при взаимодействии лекарственных средств ( Взаимодействия лекарственного вещества с рецептором).

Лекарственные препараты способны связываться с различными веществами помимо белков. Связывание обычно происходит, когда лекарственное средство взаимодействует с макромолекулой в водной среде, но может также произойти, когда оно проникает в жировую ткань организма. Поскольку она слабо перфузируется, время достижения равновесного состояния обычно длительное, особенно если препарат является высоколипофильным.

Накопление лекарственных средств в тканях или компартментах организма может быть причиной пролонгирования их эффекта, т.к. ткани высвобождают накопленный препарат по мере того, как снижается концентрация его в плазме крови. Например, тиопентал обладает высокой липофильностью, быстро проникает в головной мозг после однократного внутривенного введения и характеризуется развитием выраженного и быстрого анестезирующего эффекта; затем его действие прекращается в течение нескольких минут по мере того, как он перераспределяется в медленно перфузируемую жировую ткань. Затем тиопентал медленно высвобождается из запасов жира, поддерживая субанестетическую концентрацию в плазме крови. При повторном введении концентрация может стать значительной, приводя к тому, что препарат в большом количестве накопится в жировой ткани. Таким образом, этот процесс сначала сокращает время действия лекарственного средства, а затем продлевает его.

Некоторые лекарственные средства накапливаются в клетках вследствие связывания с белками, фосфолипидами или нуклеиновыми кислотами. Например, концентрация хлорохина в лейкоцитах и гепатоцитах может быть в тысячу раз выше, чем в плазме крови. Лекарственное вещество в клетках находится в равновесии с его концентрацией в плазме крови и переходит туда по мере элиминации препарата из организма.

Гематоэнцефалический барьер

Лекарственные средства проникают в ЦНС по капиллярам мозга и через спинномозговую жидкость. Хотя головной мозг получает примерно 1/6 сердечного выброса, распределение препаратов в ткань головного мозга ограниченно, поскольку проницаемость головного мозга отличается от других тканей. Хотя некоторые жирорастворимые лекарственные средства (например, тиопентал) легко попадают в головной мозг, проникновение полярных соединений затруднено. Причиной этого является гематоэнцефалический барьер, который состоит из эндотелия капилляров головного мозга и астроцитарных отростков. Эндотелиальные клетки капилляров головного мозга, которые более тесно соединены друг с другом, чем клетки других капилляров, замедляют диффузию водорастворимых лекарственных средств. Астроцитарная оболочка состоит из слоя глиальных клеток соединительной ткани (астроцитов), примыкающего к базальной мембране эндотелия капилляров. С возрастом защитная функция гематоэнцефалического барьера становится менее эффективной, что приводит к повышению проникновения различных веществ в головной мозг.

Лекарственные вещества могут попадать в спинномозговую жидкость желудочков через хориоидальное сплетение, затем пассивно диффундируя в ткань головного мозга из ликвора. Кроме того, в хориоидальном сплетении органические кислоты (например, пенициллин) активно транспортируются из спинномозговой жидкости в кровь.

Скорость проникновения лекарственного средства в спинномозговую жидкость, как и в случае других тканей, определяется в основном мерой связывания с белками, степенью ионизации и коэффициентом распределения лекарственного средства в жирах и воде. Проникновение в головной мозг замедлено для препаратов, в значительной степени связанных с белками, и практически отсутствует для ионизированных форм слабых кислот и оснований. Поскольку ЦНС хорошо кровоснабжается, скорость распределения лекарственного средства определяется, прежде всего, проницаемостью клеточных мембран.

Ссылка на основную публикацию
Ранее не известные патологии груди обнаружены у каждой третьей девочки — МК
Стрелюхин подписал постановление о закрытии кафе, фитнес-центров и стоматологий 09:25, 27 марта 2020 Правительство Саратовской области подписало постановление о введении...
Рак предстательной железы методы и способы лечения рака простаты на разных стадиях
Рак простаты (предстательной железы) Рак предстательной железы (простаты) является самой распространённой злокачественной опухолью у мужчин, а также второй по счету...
Рак предстательной железы не переоцениваем ли мы роль скринингового обследования и лечения
Рак простаты – лечение рака предстательной железы Лечение рака предстательной железы по международным протоколам в Москве Новейшие методы диагностики: мультипараметрическое...
Ранитидин 150 мг таблетки №100 — инструкция, цена, состав
Ранитидин 0,15 таблетки №20 Ранитидин 0,15 таблетки №20 Доступность: Нет в наличии Доставка Курьером Самовывоз Доставка Новой почтой Доставка УкрПочтой...
Adblock detector